

WedgeRock RSDR-G2 PRODUCT SHEET

MECHANICAL FAIL-SAFE OPERATOR FOR EMERGENCY SHUT DOWN APPLICATIONS

Features, Options & Configurability

- High-efficiency gear train
- Self-Locking design
- Mechanical stops with ±5° adjustment at each end of quarter-turn travel
- 90% grease-filled, maintenance-free for life
- Elastomer ingress seals, tested to IP68 rating
- Input shaft options: parallel or perpendicular to output
- Adjustable fail-stroke time
- NAMUR mounting for absolute valve position indication
- Input lockout feature
- Modular design for quarter-turn applications accommodates:
 - o Fail-Clockwise
 - Fail-Counterclockwise

- Release Signal Options:
 - Electric
 - o Hi-Lo Pressure Pilot
- Supports partial stroke testing
- Compatible with:
 - Electric valve actuators
 - Manual handwheel operation
- Configurable application-specific material and temperature configurations
- Machined for direct mount
 - Standard Flanges to MSS SP101 & ISO 5211
 - Custom Bolt Patterns
 - Available Certifications:
 - ATEX compliant
 - SIL 3 capable

PURPOSE ENGINEERED - QUALITY MANUFACTURED - PERFORMANCE TESTED

The information in this document is subject to change without notice. Updated documents can be requested or obtained from our website.

WedgeRock, LLC. 34 Business Park Road Limerick, Maine 04048 USA

www.wedgerock.com

Tel: 1-207-793-2289

Email: info@wedgerock.com

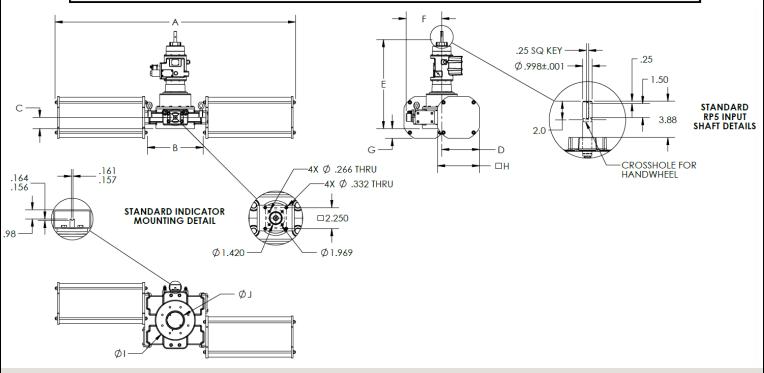
WedgeRock RSDR-G2

GENERAL OVERVIEW

		MANUAL	AND MOTO	ORIZED OP	ERATION					
MODEL	PER ANSI B17.1 KEY PER ANSI DIAMETER C B17.1 DRIVE FEATU		MAX CIRCUMSCRIBED DIAMETER OF DRIVE FEATURE	MAX STEM ENGAGEMENT	STANDARD FLANGE	FLANGE RANGE				
	DIMENSIONS F	OR REMOVABLE S	PLINED DRIVER							
	IN	IN IN IN IN			MIN	MAX				
	(MM)	(MM)	(MM)	(MM)		141114	1417 (7)			
RSDR6	2.38	2.50	2.97	3.69	F/FA14	F/FA12	F/FA16			
NODINO	(60)	(64)	(75)	(94)	1/1/4	1/1/12	1/1/410			
RSDR7	3.00	3.25	3.70	4.10	F/FA16	F/FA14	F16/FA19			
N3DN7	(76)	(83)	(94)	(104)	1/1/410	1/1/14	110/1713			
RSDR8	3.50	3.75	4.41	6.06	F/FA25	F/FA16	F/FA25			
אטעפא	(89)	(95)	(112)	(154)	F/FAZ5	r/rA10	F/FAZ5			
RSDR9	4.13	4.38	5.12	6.19	E/EA20	F/FA2F	F/FA30			
KSDK9	(105)	(111)	(130)	(157)	F/FA30	F/FA25	r/rASU			
DCDD10	4.13	4.38	5.12	6.70	E/EA20	F/FA 2F	E/EA2E			
RSDR10	(105)	(111)	(130)	(170)	F/FA30	F/FA25	F/FA35			
DCDD43	5.88	6.25	7.33	8.94	F/FA3F	F/FA 2F	E/EA 40			
RSDR12	(149)	(159)	(186)	(227)	F/FA35	F/FA25	F/FA40			
DCDD14	7.50	7.75	9.21	11.06	E/EA 40	F/FA 2F	E/EA 40			
RSDR14	(191)	(197)	(234)	(281)	F/FA48	F/FA35	F/FA48			
DCDD10	10.00	11.00	12.75	13.00	E/EACO	E/EA 40	E/EACO			
RSDR18	(254)	(279)	(324)	(330)	F/FA60	F/FA40	F/FA60			
DCDD34	11.00	12.00	14.00	15.00	E/EACO	E/EA 40	32" OD			
RSDR24	(279)	(305)	(356)	(381)	F/FA60	F/FA48	(813mm)			
DCDD3C	12.50	13.00	15.00	18.00	As Dogwins d	F/FACC	44" OD			
RSDR36	(318)	(330)	(381)	(457)	As Required	F/FA60	(1118mm)			

Other frame sizes are available if required. Contact WedgeRock for more information.

WedgeRock RSDR-G2


ENVELOPE DIMENSIONS

	RSDR ENVELOPE DIMENSIONS AND WEIGHT										
	Α	В	С	D	E	F	G	Н	I	J	WEIGHT
MODEL	IN	IN	IN	IN	IN	IN	IN	IN	IN	IN	LBS
	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(KG)
RSDR6	45.8	10.0	6.0	6.9	23.7	2.9	1.5	7.5	8.8	3.7	352
NJUNO	(1,163)	(254)	(152)	(175)	(602)	(74)	(38)	(191)	(224)	(94)	(160)
RSDR7	53.1	11.9	6.7	7.8	26.1	2.9	1.8	8.5	9.9	4.4	469
N3DN7	(1,349)	(302)	(170)	(198)	(663)	(74)	(46)	(216)	(251)	(112)	(213)
RSDR8	69.9	14.1	8.8	9.5	30.5	2.9	1.7	10.5	11.6	5.3	838
NJDNO	(1,775)	(358)	(224)	(241)	(775)	(74)	(43)	(267)	(295)	(135)	(380)
RSDR9	86.0	20.0	11.5	13.5	31.8	2.9	3.5	15.0	13.8	6.8	1430
NSDNS	(2,184)	(508)	(292)	(343)	(808)	(74)	(89)	(381)	(351)	(173)	(649)
RSDR10	86.0	20.0	11.4	13.5	38.4	2.9	3.6	15.0	16.7	6.8	1840
KSDK10	(2,184)	(508)	(290)	(343)	(975)	(74)	(91)	(381)	(424)	(173)	(835)
RSDR12	112.3	25.0	5.6	16.9	38.9	15.7	3.8	18.8	18.5	8.8	3382
NSDN12	(2,852)	(635)	(142)	(429)	(988)	(399)	(97)	(478)	(470)	(224)	(1,534)
RSDR14	132.8	30.8	7.0	22.0	45.6	18.6	5.5	25.0	21.7	11.0	5842
N3DN14	(3,373)	(782)	(178)	(559)	(1,158)	(472)	(140)	(635)	(551)	(279)	(2,650)
RSDR18	132.8	30.8	7.0	25.0	52.3	20.0	5.5	25.0	27.0	14.3	8702
K2DK19	(3,373)	(782)	(178)	(635)	(1,329)	(508)	(140)	(635)	(686)	(362)	(3,947)
RSDR24	157.1	40.0	8.5	27.0	58.4	24.0	7.2	30.0	32.0	16.3	10494
N3DN24	(3,990)	(1,016)	(216)	(686)	(1,483)	(610)	(183)	(762)	(813)	(413)	(4,760)
RSDR36	209.4	53.3	10.0	36.0	73.8	30.0	9.6	38.0	44.0	19.3	17351
KSDK36	(5,319)	(1,355)	(254)	(914)	(1,873)	(762)	(244)	(965)	(1,118)	(489)	(7,870)

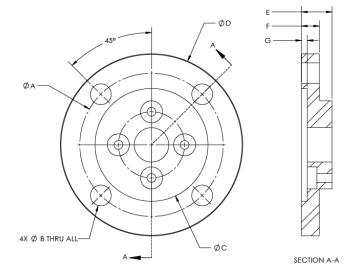
Dimensions represent most common configurations. Other dimensional configurations possible.

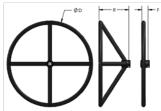
Values subject to change with design updates.

Weight may vary with final configuration.

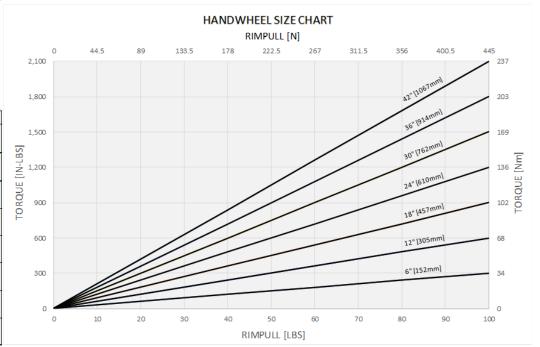
WedgeRock, LLC. 34 Business Park Road Limerick, Maine 04048 USA

Tel: 1-207-793-2289 www.wedgerock.com


Email: info@wedgerock.com

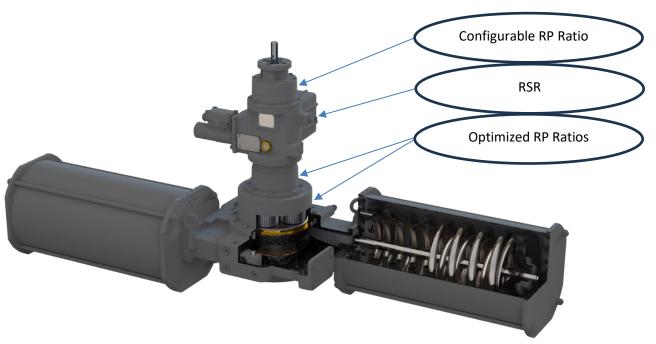

WedgeRock MOTOR ADAPTERS

	Α	В	С	D	E	F	G
	IN	IN	IN	IN	IN	IN	IN
	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)	(MM)
FA10	4.00	0.41	2.31	4.92	0.94	0.69	0.17
FAIU	(101.6)	(10.3)	(58.7)	(125.0)	(23.8)	(17.5)	(4.3)
FA14	5.50	0.69	3.75	6.89	1.31	0.81	0.16
FA14	(139.7)	(17.5)	(95.3)	(175.0)	(33.4)	(20.7)	(4.1)
FA16	6.50	0.80	5.00	8.27	1.39	0.81	0.26
LW10	(165.1)	(20.2)	(127.0)	(210.1)	(35.2)	(20.7)	(6.6)


F10	4.02	0.43	2.76	4.92	0.94	0.69	0.17
F10	(102.0)	(11.0)	(70.0)	(125.0)	(23.8)	(17.5)	(4.3)
F14	5.51	0.69	3.94	6.89	1.31	0.81	0.17
F14	(140.0)	(17.5)	(100.0)	(175.0)	(33.4)	(20.6)	(4.3)
F16	6.50	0.87	5.12	8.27	1.39	0.81	0.26
L10	(165.0)	(22.0)	(130.0)	(210.0)	(35.2)	(20.7)	(6.6)

WedgeRock HANDWHEELS

D	R	F
IN	IN	IN
(MM)	(MM)	(MM)
6	5.25	1.75
(152)	(133)	(44)
12	5.25	1.75
(305)	(133)	(44)
18	6.25	1.75
(457)	(159)	(44)
24	8.38	1.75
(610)	(213)	(44)
30	10.00	1.75
(762)	(254)	(44)
36	9.63	1.75
(914)	(244)	(44)
42	10.13	1.75
(1,067)	(257)	(44)



WedgeRock RP SERIES

AUXILIARY PLANETARY GEAR RATIOS

The RSDR utilizes RP planetary gears to optimize input torque and operating times. Below, you will find all available ratio options for each RP stage. The RSDRs displayed on the following page are designed with optimized RP ratios, allowing the final input planetary RP gear to be configured according to specific applications. Although each RP stage can be adjusted to meet application requirements, it is recommended to use the standard optimized ratios whenever possible. Note that the RSR release mechanism has a fixed ratio that cannot be altered.

	COMMON RATIOS FOR RP5 & RP6																
RATIO ¹ [MOST COMMON]	2.50	[2.6]	2.71	2.78	2.85	[3.00]	3.18	[3.29]	3.40	3.67	4.00	[4.20]	4.43	[5.00]	5.80	[6.33]	[9.00]
MECHANICAL ADVANTAGE ²	2.4	[2.5]	2.6	2.7	2.8	[2.9]	3.1	[3.2]	3.3	3.6	3.9	[4.1]	4.3	[4.9]	5.6	[6.1]	[8.7]
COMMON RATIOS FOR RP8-RP24																	
RATIO ¹ [MOST COMMON]	[2.5]	2.60	2.71	2.78^	2.85	[3.00]	3.18	3.29^	3.40	3.67	[4.00]	4.20^	4.43	[5.00]	5.80^	6.33^^	9.00^^^
MECHANICAL ADVANTAGE ²	[2.4]	2.5	2.6	2.7	2.8	[2.9]	3.1	3.2	3.3	3.6	[3.9]	4.1	4.3	[4.9]	5.6	6.1	8.7
CC	COMMON RATIOS FOR RP36 ^ Catalog torque rating to be reduced by 20% using this ratio																
RATIO ¹ [MOST COMMON]	2.44	2.63	2.86	3.17	3.60	4.25	[5.33]	6.20									
MECHANICAL ADVANTAGE ²	2.3	2.5	2.7	3.0	3.4	4.0	[5.1]	5.9	9 ^^^ Catalog torque rating to be reduced by 60% using th						this ratio	1	

¹⁾ Additional ratios available upon request.

²⁾ Mechanical advantage can fall short of published value by 10% until gearbox has worn in. Wear in should occur within 10 cycles.

OPTIMIZED PLANETARY GEAR RATIOS

Frame Size	Frame	ng Can			DR Out				Standard Gear Stack		Total Gear Ratio								hani	ical A	Adva	ntag	ge	RS	DR In	put To	orque	for N	lax Ra	iting
	Rating In-Lbs/(Nm)	Spring	Start	Fail (Spring) Run	End	Start	Max Operate Run	d End	Configuration & Ratios											. / 10/							In-Lbs/(N	1		
	111 2037 (14111)	•	Start	Kuli	Ellu	Start	Kuli	Ellu	Optimized Ratios				io (mor RP5				+/- 10%									III-LUS/(IV	111)			
		60	8,400	7,812	7,224	20,776	20,188	19,600	Shown Below	1.00	2.60	3.00	4.20	5.00	6.33	9.00														
	28,000		(949) 11,200	(883) 10,416	(816) 9,632	(2,348) 18,368	(2,281) 17,584	(2,215) 16,800	RP6-9.0/															5265	2088	1809	1292	1086	858	603
RSDR6	(2.164)	80	(1,266) 14.000	(1,177) 13,020	(1,088) 12,040	(2,075) 15,960	(1,987) 14,980	(1,898)	RSR5-2	10	26	30	43	51	64	91	5	13	15	22	26	33	46	/505/	(226)	(204)	(146)	(122)	(07)	(60)
	(3,164)	100	(1,582)	(1,471)	(1,360)	(1,803)	(1,693)	(1,582)																(595)	(236)	(204)	(146)	(123)	(97)	(68)
	45,000	60	13,500 (1.525)	12,555 (1.419)	11,610 (1.312)	33,390 (3.773)	32,445 (3,666)	31,500 (3.559)	RP6H-5.0/															5234	2075	1799	1285	1079	852	600
RSDR7		80	18,000	16,740 (1.892)	15,480 (1.749)	29,520 (3.336)	28,260 (3.193)	27,000 (3.051)	RP5-3.0/	16.9	44	51	71	84	107	152	9	21.7	25	35	42	53	75							
	(5,085)	100	22,500	20,925	19,350	25,650	24,075	22,500	RSR5-2															(591)	(235)	(203)	(145)	(122)	(96)	(68)
		60	(2,542) 22,500	(2,364) 20,925	(2,186) 19,350	(2,898) 55,650	(2,720) 54,075	(2,542) 52,500		\vdash					\dashv						\dashv			\vdash						
DCDDC	75,000	\vdash	(2,542)	(2,364) 27,900	(2,186) 25,800	(6,288) 49,200	(6,110) 47,100	(5,932) 45,000	RP8-5.0/	_	70	0.4	440		470	252	l	2.0	40	50		00	425	5234	2075	1799	1285	1079	852	600
RSDR8	(8,475)	80	(3,390) 37,500	(3,153) 34,875	(2,915) 32,250	(5,559) 42,750	(5,322) 40,125	(5,085) 37,500	RP6-5.0/ RSR5-2	28	73	84	118	141	178	253	14	36	42	58	69	88	125	(591)	(235)	(203)	(145)	(122)	(96)	(68)
	(0,473)	100	(4,237)	(3,941)	(3,644)	(4,831)	(4,534)	(4,237)																(331)	(233)	(203)	(143)	(122)	(90)	(00)
	135,000	60	40,500 (4,576)	37,665 (4,256)	34,830 (3,936)	100,170 (11,319)	97,335 (10,998)	94,500 (10,678)	RP9-5.0/															5234	2075	1799	1285	1079	852	600
RSDR9		80	54,000 (6.102)	50,220 (5,675)	46,440 (5.247)	(10.007)	84,780 (9.580)	81,000 (9.153)	RP6-9.0/	51	132	152	213	253	320	456	26	65	75	105	125	158	225							
	(15,254)	100	67,500	62,775 (7.093)	58,050	76,950	72,225	67,500 (7.627)	RSR5-2															(591)	(235)	(203)	(145)	(122)	(96)	(68)
		60	67,500	62,775	58,050	166,950	162,225	157,500	RP10-5.0/												\neg									
RSDR10	225,000	80	(7,627) 90,000	(7,093) 83,700	(6,559) 77,400	(18,864) 147,600	(18,331) 141,300	(17,797) 135,000	RP8-5.0/	93	241	278	389	463	586	833	46	115	133	186	222	281	399	4921	1951	1691	1208	1015	801	564
KODKIO	(25,424)	\vdash	(10,169) 112,500	(9,458) 104,625	(8,746) 96,750	(16,678) 128,250	(15,966) 120,375	(15,254) 112,500	RP6-3.29/ RSR5-2	95	241	2/0	303	403	300	033	40	113	155	100	222	201	399	(556)	(220)	(191)	(136)	(115)	(91)	(64)
	,	100	(12,712) 120,000	(11,822) 111,600	(10,932) 103,200	(14,492) 296,800	(13,602) 288,400	(12,712) 280,000	N3N3-2	Ш					-						\rightarrow			(***)	(===)	,,	,,	,,	\ <i>/</i>	1=1/
	400,000	60	(13,559)	(12,610)	(11,661)	(33,537)	(32,588)	(31,638)	RP12-5.0/															5756	2282	1978	1413	1187	937	659
RSDR12		80	160,000 (18,079)	148,800 (16,814)	137,600 (15,548)	262,400 (29,650)	251,200 (28,384)	240,000 (27,119)	RP8-5.0/ RP6-5.0/	141	366	422	591	703	890	1266	69	175	202	283	337	427	607							
	(45,198)	100	(22.599)	186,000 (21,017)	172,000 (19.435)	(25,763)	(24.181)	200,000 (22,599)	RSR5-2															(650)	(258)	(224)	(160)	(134)	(106)	(75)
	750,000	60	225,000	209,250	193,500	556,500	540,750	525,000 (59.322)	RP14-5.0/															4736	1878	1628	1163	977	774	543
RSDR14	750,000	1 1	300,000	279,000	258,000	492,000	471,000	450,000	RP12-6.3/	320	833	961	1346	1602	2028	2884	158	399	461	645	768	972	1382	4/30	18/8	1028	1103	9//	771	543
NJDN14	(84,746)		(33,898) 375,000	(31,525) 348,750	(29,153) 322,500	(55,593) 427,500	(53,220) 401,250	(50,847) 375,000	RP8-9.0/ RSR5-2															(535)	(212)	(184)	(131)	(110)	(87)	(61)
		-	(42,373) 405,000	(39,407) 376,650	(36,441) 348,300	(48,305) 1,001,700	(45,339) 973,350	(42,373) 945,000	RP18-5.0/	\vdash											\dashv									
	1,350,000	60	(45,763) 540,000	(42,559) 502,200	(39,356) 464,400	(113,186) 885,600	(109,983) 847,800	(106,780) 810,000	RP12-5.0/															3709	1471	1274	910	765	604	425
RSDR18		80	(61,017)	(56,746)	(52,475)	(100,068)	(95,797)	(91,525)	RP8-3.0/ RSR6-1.125/	759	1974	2278	3189	3797	4807	6834	364	918	1059	1483	1765	2235	3178							
	(152,542)	100	675,000 (76,271)	627,750 (70,932)	580,500 (65,593)	769,500 (86,949)	722,250 (81,610)	675,000 (76,271)	RSR6-1.125/ RP6-9.0															(419)	(166)	(144)	(103)	(86)	(68)	(48)
	2,250,000	60	675,000 (76,271)	627,750 (70,932)	580,500 (65,593)	1,669,500 (188,644)	1,622,250	1,575,000	RP24-5.0/															3709	1471	1274	910	765	604	425
RSDR24	2,230,000	80	900,000	837,000	774,000	1,476,000	1,413,000	1,350,000	RP14-5.0/ RP8-5.0/	1266	3291	3797	5316	6328	8011	11391	607	1530	1765	2472	2942	3725	5296	""		227-7	310	, 55	-00-	123
	(254,237)	100	1,125,000	1,046,250	967,500	1,282,500	1,203,750	1,125,000	RSR6-1.125/															(419)	(166)	(144)	(103)	(86)	(68)	(48)
			(127,119) 1,200,000	(118,220) 1,116,000	(109,322) 1,032,000	(144,915) 3,468,000	(136,017) 3,384,000	(127,119) 3,300,000	RP6-9.0 RP36-5.0/	\vdash											\dashv			\vdash						
	4,500,000		(135,593) 1,600,000	(126,102) 1,488,000	(116,610) 1,376,000	(391,864) 3,124,000	(382,373) 3,012,000	(372,881) 2,900,000	RP18-5.0/															4588	1819	1577	1126	946	747	526
RSDR36	(500 455)	80	(180,791)	(168,136)	(155,480)	(352,994)	(340,339)	(327,684)	RP10-5.0/ RSR8-1.125/	2109	5484	6328	8859	10547	13352	18984	981	2474	2854	3996	4757	6022	8562		(225)	(4.70)	(4.07)	(4.07)	(0.4)	450
	(508,475)	100	2,000,000 (225,989)	1,860,000 (210.169)	1,720,000 (194,350)	2,780,000 (314,124)	2,640,000 (298.305)	2,500,000 (282,486)	RP8-3.0 / RP6-5.0								1							(518)	(206)	(178)	(127)	(107)	(84)	(59)

Notes:

- Mechanical advantage may fall short of the published value by up to 10% until the gearbox has worn in. Wear-in should occur within 10 cycles.
- Calculated input torque values from the table yield the corresponding 1,000-cycle rated output torque of the model.
- Additional ratios are available if required.
- Alternative planetary gear configurations are possible.

WedgeRock, LLC. 34 Business Park Road Limerick, Maine 04048 USA

www.wedgerock.com

Tel: 1-207-793-2289

Email: info@wedgerock.com

WedgeRock RSDR SERIES

SERVICE CONDITIONS

Explosion Protection

Available explosion protection configuration conforms to ATEX requirements for T3 or T4. The following is the standard ATEX rating:

II 2 G Ex h IIC T4 Gb II 2 D Ex h IIIC T135°C Db

SIL

The RSDR conforms to SIL and is certified by Exida in compliance with IEC 61508. The RSDR is SIL3 capable.

Enclosure Protection

Mechanical portion of the RSDR is designed and tested to seal while submerged in over 1m of water per IP68.

Ambient Temperature Rating

TEMPERATU	RE SERVICE COI	NDITIONS
	MIN OPERATING TEMP	MAX OPERATING TEMP
SERVICE CONDITION	°F	°F
	(°C)	(°C)
STANDARD SERVICE	-40	160
(SIL)	(-40)	(70)
EXTENDED SERVICE	-60	240
EXTENDED SERVICE	(-51)	(115)
ATEX T4 STANDARD	-31	160
ATEX 14 STANDARD	(-35)	(70)
ATEX T4 EXTENDED	-60	160
ATEX 14 EXTENDED	(-51)	(70)

Wider operating temperature ranges are available. Consult with factory.

WedgeRock Mechanical Spring Return (RSDR) Operation All <u>Electric</u> Spring Return Solution

Patent Pending

Spring Release Solenoid

- Initiates fail-safe operation upon loss or application of signal, depending on configuration
- Typical electric solenoid specifications: Signal Voltage- 24VDC
- Other signal options available

Electric Actuator (not supplied)

- Provides output torque to operate the valve and preload the spring
- Electric actuator must be configured to reference an external position indicator, as it decouples from the valve during fail-safe operation and loses position feedback

Position Indication (not supplied)

- Coupled to Valve Stem
- Sends true valve position feedback to the electric actuator
- Provides accurate local position indication for the operator

Example Mode of Operation

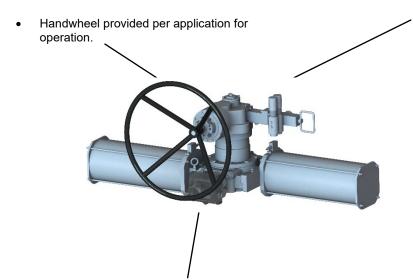
(Methods of operation may depend on hardware used or criteria for system failure.)

Example 1

Standard Operation

- Valve is operated in one direction by the electric actuator or handwheel, compressing the spring in the process
- Spring drives the valve in the opposite direction when the configured signal condition is met (loss or application of signal)

Fail-Safe Operation


- Spring release is initiated based on configured signal condition (either loss or presence of signal to the solenoid)
- Once the signal condition resets, the electric actuator can either recognize position from a position transmitter or reset by operating to the fail position, then the signal is restored to the solenoid re-engaging the spring. (Operation of the actuator while the solenoid has lost signal will not change the valve position from the fail state.)

WedgeRock Mechanical Spring Return (RSDR) Operation All Manual Spring Return Solution

Patent Pending

Manual Input

Spring Release Line Pressure Operated (LPO)

- Starts fail-safe operation when pressure limit setting is exceeded.
 - High pressure limit setting
 - Low pressure limit setting
- Hi/Lo pressure settings from 10 to 10,000 psi.

Position Indication

- Coupled to Valve Stem.
- Provides local true valve position to operator.

Example Mode of Operation

(Methods of operation may depend on specific application.)

Example 1

Standard Operation

- Valve is operated in one direction only using handwheel. (Operation compresses the spring.)
- Operating in opposing direction
 - Valve is operated in the opposing direction by the spring when manual override button depressed on LPO.
 - o Operate handwheel in opposing direction decompressing spring.

Fail-Safe Operation

• Upon pressure signal falling or exceeding set limits in the LPO, the spring is released to a fail-safe position.

LPP Reset

- When pressure returns within acceptable limits, a handle is pulled and the LPO is disengaged from the RS. The handwheel is then able to operate the RS and position the valve as needed.
- Optionally, if for example a pipeline has no pressure and the low limit is set to some value, the LPP can be configured to pull the handle to disengage the LPO from the RS before the pipeline pressure returns within set limits. The handwheel is then able to operate the RS and position the valve as needed. Once pressure returns within limits, the LPO will be able to release the spring of the RS and operate to a fail-safe position should the pressure exceed the set limits.

WedgeRock, LLC. 34 Business Park Road Limerick, Maine 04048 USA

www.wedgerock.com

Tel: 1-207-793-2289 Email: info@wedgerock.com

ABOUT WEDGEROCK

The WedgeRock name and logo symbolize the elegance of a simple and effective design, and the grit, focus, and determination required to make things happen – the work required to get big things moving. Pragmatism and hard work are central to our culture and reflected in everything we do.

Don't let our dirty hands and old school approach fool you. WedgeRock brings industry leading innovation to your engineered projects in standard lead times.

With a focused approach, WedgeRock provides solutions for the most demanding torque and thrust application. Whether you need to operate valves thousands of meters below the ocean surface, or a purpose designed gear operator for your valve line, give us a call or send an email to get the partnership started.

OUR MISSION

WedgeRock provides performance engineered actuation solutions for demanding applications.

www.wedgerock.com

WedgeRock, LLC.
34 Business Park Road
Limerick, Maine 04048 USA

Tel: 1-207-793-2289 Email: info@wedgerock.com